

Unit Outline (Higher Education)

Institute / School: Institute of Innovation, Science & Sustainability

Unit Title: VIBRATION ENGINEERING

Unit ID: ENGPG9302

Credit Points: 15.00

Prerequisite(s): Nil

Co-requisite(s): Nil

Exclusion(s): (ENGRG3301)

ASCED: 030701

Description of the Unit:

This unit introduces students to the aspects of mechanical vibration and balancing in a mathematical and theoretical context. The unit will employ computational and experimental methods to highlight the concepts presented.

Grade Scheme: Graded (HD, D, C, P, MF, F, XF)

Work Experience:

No work experience: Student is not undertaking work experience in industry.

Placement Component: No

Supplementary Assessment: Yes

Where supplementary assessment is available a student must have failed overall in the Unit but gained a final mark of 45 per cent or above, has completed all major assessment tasks (including all sub-components where a task has multiple parts) as specified in the Unit Description and is not eligible for any other form of supplementary assessment

Course Level:

Level of Unit in Course	AQF Level of Course					
	5	6	7	8	9	10
Introductory						
Intermediate						
Advanced			>			

Learning Outcomes:

Knowledge:

- **K1.** Describe the behaviour of dynamic systems in the time domain. Describe dynamic systems in the frequency domain.
- **K2.** Discuss how vibration systems respond to harmonic excitation. Explain the transient response of the vibrating system.
- **K3.** Relate experimental findings to the analytical model and system variables.

Skills:

- **S1.** Demonstrate how computer algebra systems are employed for modelling and simulation.
- **S2.** Solve real engineering problems through symbolic, numeric and experimental dynamic analysis.
- **S3.** Evaluate analytical models and reflect on practice.
- **S4.** Present findings in manners which can be appreciated by professional and lay people.

Application of knowledge and skills:

- **A1.** Test and evaluate an existing vibrating system.
- **A2.** Apply dynamic analysis techniques to a variety of real engineering applications.
- **A3.** Apply existing and developing knowledge and experience to the modelling and analysis of a variety of dynamic engineering systems.

Unit Content:

Topics may include:

- Mathematical background (linearization and Laplace Transforms)
- Mathematical description of mechanical systems.
- Transient and free vibration.
- Harmonically-Forced Vibration System and Resonance.
- Vibration Isolation and Measurement.
- Balancing

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Tasks	Assessment Type	Weighting
K1-K3, S1-S4, A2- A3	A modelling exercise based on a real-world problem that exposes the student to numerical modelling techniques.	Numerical project, numerical assessment tasks.	30-50%
K1 - K3, S3	Assessment of all or part of the course by examination.	Mid-semester test, final test, quizzes.	40-60%
S4, A1	Demonstrate an understanding of fundamental knowledge of the topics delivered in the lectures and relate to observations, tests, or experiments to solve design-based problems.	Oral or written explanatory task, presentation.	10-30%

Adopted Reference Style:

Unit Outline (Higher Education) ENGPG9302 VIBRATION ENGINEERING

IEEE

Refer to the <u>library website</u> for more information

Fed Cite - referencing tool